Entire solutions of multivalued nonlinear Schrodinger equations in Sobolev spaces with variable exponent
نویسنده
چکیده
We establish the existence of an entire solution for a class of stationary Schrödinger equations with subcritical discontinuous nonlinearity and lower bounded potential that blows-up at infinity. The abstract framework is related to Lebesgue–Sobolev spaces with variable exponent. The proof is based on the critical point theory in the sense of Clarke and we apply Chang’s version of the Mountain Pass Lemma without the Palais– Smale condition for locally Lipschitz functionals. Our result generalizes in a nonsmooth framework a result of Rabinowitz [35] on the existence of ground-state solutions of the nonlinear Schrödinger equation.
منابع مشابه
On the Cauchy problem in Sobolev spaces for nonlinear Schrodinger equations with potential
We consider the Cauchy problem for nonlinear Schrödinger equations in the presence of a smooth, possibly unbounded, potential. No assumption is made on the sign of the potential. If the potential grows at most linearly at infinity, we construct solutions in Sobolev spaces (without weight), locally in time. Under some natural assumptions, we prove that the H-solutions are global in time. On the ...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملMultiple Solutions for a Class of p(x)-Laplacian Systems
Since the space L x and W1,p x were thoroughly studied by Kováčik and Rákosnı́k 1 , variable exponent Sobolev spaces have been used in the last decades to model various phenomena. In 2 , Růžička presented the mathematical theory for the application of variable exponent spaces in electro-rheological fluids. In recent years, the differential equations and variational problems with p x -growth cond...
متن کامل